54 resultados para PROTEINASE

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A serpin was identified in normal mammary gland by differential cDNA sequencing. In situ hybridization has detected this serpin exclusively in the myoepithelial cells on the normal and noninvasive mammary epithelial side of the basement membrane and thus was named myoepithelium-derived serine proteinase inhibitor (MEPI). No MEPI expression was detected in the malignant breast carcinomas. MEPI encodes a 405-aa precursor, including an 18-residue secretion signal with a calculated molecular mass of 46 kDa. The predicted sequence of the new protein shares 33% sequence identity and 58% sequence similarity to plasminogen activator inhibitor (PAI)-1 and PAI-2. To determine whether MEPI can modulate the in vivo growth and progression of human breast cancers, we transfected a full-length MEPI cDNA into human breast cancer cells and studied the orthotopic growth of MEPI-transfected vs. control clones in the mammary fat pad of athymic nude mice. Overexpression of MEPI inhibited the invasion of the cells in the in vitro invasion assay. When injected orthotopically into nude mice, the primary tumor volumes, axillary lymph node metastasis, and lung metastasis were significantly inhibited in MEPI-transfected clones as compared with controls. The expression of MEPI in myoepithelial cells may prevent breast cancer malignant progression leading to metastasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of PAR2-activating PAR2-activating peptides, SLIGRL (SL)-NH2, and trans-cinnamoyl-LIGRLO (tc)-NH2 were compared with the action of trypsin, thrombin, and the PAR1 selective-activating peptide: Ala-parafluoroPhe-Arg-cyclohexylAla-Citrulline-Tyr (Cit)-NH2 for stimulating intestinal ion transport. These agonists were added to the serosa of stripped rat jejunum segments mounted in Ussing chambers, and short circuit current (Isc) was used to monitor active ion transport. The relative potencies of these agonists also were evaluated in two bioassays specific for the activation of rat PAR2: a cloned rat PAR2 cell calcium-signaling assay (PAR2-KNRK cells) and an aorta ring relaxation (AR) assay. In the Isc assay, all agonists, except thrombin, induced an Isc increase. The SL-NH2-induced Isc changes were blocked by indomethacin but not by tetrodotoxin. The relative potencies of the agonists in the Isc assay (trypsin≫SL-NH2>tc-NH2>Cit-NH2) were strikingly different from their relative potencies in the cloned PAR2-KNRK cell calcium assay (trypsin≫>tc-NH2 ≅ SL-NH2≫>Cit-NH2) and in the AR assay (trypsin≫>tc-NH2 ≅ SL-NH2). Furthermore, all agonists were maximally active in the PAR2-KNRK cell and AR assays at concentrations that were one (PAR2 -activating peptides) or two (trypsin) orders of magnitude lower than those required to activate intestinal transport. Based on the distinct potency profile for these agonists and the considerable differences in the concentration ranges required to induce an Isc effect in the intestinal assay compared with the PAR2-KNRK and AR assays, we conclude that a proteinase-activated receptor, pharmacologically distinct from PAR2 and PAR1, is present in rat jejunum and regulates intestinal transport via a prostanoid-mediated mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of pro-phenol oxidase (proPO) in insects and crustaceans is important in defense against wounding and infection. The proPO zymogen is activated by a specific proteolytic cleavage. PO oxidizes phenolic compounds to produce quinones, which may help to kill pathogens and can also be used for synthesis of melanin to seal wounds and encapsulate parasites. We have isolated from the tobacco hornworm, Manduca sexta, a serine proteinase that activates proPO, and have cloned its cDNA. The isolated proPO activating proteinase (PAP) hydrolyzed artificial substrates but required other protein factors for proPO activation, suggesting that proPO-activating enzyme may exist as a protein complex, one component of which is PAP. PAP (44 kDa) is composed of two disulfide-linked polypeptide chains (31 kDa and 13 kDa). A cDNA for PAP was isolated from a hemocyte library, by using a PCR-generated probe based on the amino-terminal amino acid sequence of the 31-kDa catalytic domain. PAP belongs to a family of arthropod serine proteinases containing a carboxyl-terminal proteinase domain and an amino-terminal “clip” domain. The member of this family most similar in sequence to PAP is the product of the easter gene from Drosophila melanogaster. PAP mRNA was present at a low level in larval hemocytes and fat body, but became much more abundant in fat body after insects were injected with Escherichia coli. Sequence data and 3H-diisopropyl fluorphosphate labeling results suggest that the same PAP exists in hemolymph and cuticle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prosystemin is the 200-amino acid precursor of the 18-amino acid polypeptide defense hormone, systemin. Herein, we report that prosystemin was found to be as biologically active as systemin when assayed for proteinase inhibitor induction in young tomato plants and nearly as active in the alkalinization response in Lycopersicon esculentum suspension-cultured cells. Similar to many animal prohormones that harbor multiple signals, the systemin precursor contains five imperfect repetitive domains N-terminal to a single systemin domain. Whether the five repetitive domains contain defense signals has not been established. N-terminal deletions of prosystemin had little effect on its activity in tomato plants or suspension-cultured cells. Deletion of the C-terminal region of prosystemin containing the 18-amino acid systemin domain completely abolished its proteinase inhibitor induction and alkalinization activities. The apoplastic fluid from tomato leaves and the medium of cultured cells were analyzed for proteolytic activity that could process prosystemin to systemin. These experiments showed that proteolytic enzymes present in the apoplasm and medium could cleave prosystemin into large fragments, but the enzymes did not produce detectable levels of systemin. Additionally, inhibitors of these proteolytic enzymes did not affect the biological activity of prosystemin. The cumulative data indicated that prosystemin and/or large fragments of prosystemin can be active inducers of defense responses in both tomato leaves and suspension-cultured cells and that the only region of prosystemin that is responsible for activating the defense response resides in the systemin domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteinase-activated receptor 2 (PAR-2) is a recently characterized G-protein coupled receptor that is cleaved and activated by pancreatic trypsin. Trypsin is usually considered a digestive enzyme in the intestinal lumen. We examined the hypothesis that trypsin, at concentrations normally present in the lumen of the small intestine, is also a signaling molecule that specifically regulates enterocytes by activating PAR-2. PAR-2 mRNA was highly expressed in the mucosa of the small intestine and in an enterocyte cell line. Immunoreactive PAR-2 was detected at the apical membrane of enterocytes, where it could be cleaved by luminal trypsin. Physiological concentrations of pancreatic trypsin and a peptide corresponding to the tethered ligand of PAR-2, which is exposed by trypsin cleavage, stimulated generation of inositol 1,4,5-trisphosphate, arachidonic acid release, and secretion of prostaglandin E2 and F1α from enterocytes and a transfected cell line. Application of trypsin to the apical membrane of enterocytes and to the mucosal surface of everted sacs of jejunum also stimulated prostaglandin E2 secretion. Thus, luminal trypsin activates PAR-2 at the apical membrane of enterocytes to stimulate secretion of eicosanoids, which regulate multiple cell types in a paracrine and autocrine manner. We conclude that trypsin is a signaling molecule that specifically regulates enterocytes by triggering PAR-2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar UV irradiation is the causal factor for the increasing incidence of human skin carcinomas. The activation of the transcription factor activator protein-1 (AP-1) has been shown to be responsible for the tumor promoter action of UV light in mammalian cells. We demonstrate that proteinase inhibitor I (Inh I) and II (Inh II) from potato tubers, when applied to mouse epidermal JB6 cells, block UV-induced AP-1 activation. The inhibition appears to be specific for UV-induced signal transduction for AP-1 activation, because these inhibitors did not block UV-induced p53 activation nor did they exhibit any significant influence on epidermal growth factor-induced AP-1 transactivation. Furthermore, the inhibition of UV-induced AP-1 activity occurs through a pathway that is independent of extracellular signal-regulated kinases and c-Jun N-terminal kinases as well as P38 kinases. Considering the important role of AP-1 in tumor promotion, it is possible that blocking UV-induced AP-1 activity by Inh I or Inh II may be functionally linked to irradiation-induced cell transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pregnancy-associated glycoproteins (PAGs) are structurally related to the pepsins, thought to be restricted to the hooved (ungulate) mammals and characterized by being expressed specifically in the outer epithelial cell layer (chorion/trophectoderm) of the placenta. At least some PAGs are catalytically inactive as proteinases, although each appears to possess a cleft capable of binding peptides. By cloning expressed genes from ovine and bovine placental cDNA libraries, by Southern genomic blotting, by screening genomic libraries, and by using PCR to amplify portions of PAG genes from genomic DNA, we estimate that cattle, sheep, and most probably all ruminant Artiodactyla possess many, possibly 100 or more, PAG genes, many of which are placentally expressed. The PAGs are highly diverse in sequence, with regions of hypervariability confined largely to surface-exposed loops. Nonsynonymous (replacement) mutations in the regions of the genes coding for these hypervariable loop segments have accumulated at a higher rate than synonymous (silent) mutations. Construction of distance phylograms, based on comparisons of PAG and related aspartic proteinase amino acid sequences, suggests that much diversification of the PAG genes occurred after the divergence of the Artiodactyla and Perissodactyla, but that at least one gene is represented outside the hooved species. The results also suggest that positive selection of duplicated genes has acted to provide considerable functional diversity among the PAGs, whose presence at the interface between the placenta and endometrium and in the maternal circulation indicates involvement in fetal–maternal interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high-molecular-weight serine proteinase inhibitors (serpins) are restricted, generally, to inhibiting proteinases of the serine mechanistic class. However, the viral serpin, cytokine response modifier A, and the human serpins, antichymotrypsin and squamous cell carcinoma antigen 1 (SCCA1), inhibit different members of the cysteine proteinase class. Although serpins employ a mobile reactive site loop (RSL) to bait and trap their target serine proteinases, the mechanism by which they inactivate cysteine proteinases is unknown. Our previous studies suggest that SCCA1 inhibits papain-like cysteine proteinases in a manner similar to that observed for serpin–serine proteinase interactions. However, we could not preclude the possibility of an inhibitory mechanism that did not require the serpin RSL. To test this possibility, we employed site-directed mutagenesis to alter the different residues within the RSL. Mutations to either the hinge or the variable region of the RSL abolished inhibitory activity. Moreover, RSL swaps between SCCA1 and the nearly identical serpin, SCCA2 (an inhibitor of chymotrypsin-like serine proteinases), reversed their target specificities. Thus, there were no unique motifs within the framework of SCCA1 that independently accounted for cysteine proteinase inhibitory activity. Collectively, these data suggested that the sequence and mobility of the RSL of SCCA1 are essential for cysteine proteinase inhibition and that serpins are likely to utilize a common RSL-dependent mechanism to inhibit both serine and cysteine proteinases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two important cytokines mediating inflammation are tumor necrosis factor α (TNFα) and IL-1β, both of which require conversion to soluble forms by converting enzymes. The importance of TNFα-converting enzyme and IL-1β-converting enzyme in the production of circulating TNFα and IL-1β in response to systemic challenges has been demonstrated by the use of specific converting enzyme inhibitors. Many inflammatory responses, however, are not systemic but instead are localized. In these situations release and/or activation of cytokines may be different from that seen in response to a systemic stimulus, particularly because associations of various cell populations in these foci allows for the exposure of procytokines to the proteolytic enzymes produced by activated neutrophils, neutrophil elastase (NE), proteinase 3 (PR3), and cathepsin G (Cat G). To investigate the possibility of alternative processing of TNFα and/or IL-1β by neutrophil-derived proteinases, immunoreactive TNFα and IL-1β release from lipopolysaccharide-stimulated THP-1 cells was measured in the presence of activated human neutrophils. Under these conditions, TNFα and IL-1β release was augmented 2- to 5-fold. In the presence of a specific inhibitor of NE and PR3, enhanced release of both cytokines was largely abolished; however, in the presence of a NE and Cat G selective inhibitor, secretory leucocyte proteinase inhibitor, reduction of the enhanced release was minimal. This finding suggested that the augmented release was attributable to PR3 but not NE nor Cat G. Use of purified enzymes confirmed this conclusion. These results indicate that there may be alternative pathways for the production of these two proinflammatory cytokines, particularly in the context of local inflammatory processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteinase inhibitor I (Inh I) and proteinase inhibitor II (Inh II) from potato tubers are effective proteinase inhibitors of chymotrypsin and trypsin. Inh I and Inh II were shown to suppress irradiation-induced transformation in mouse embryo fibroblasts suggesting that they possess anticarcinogenic characteristics. We have previously demonstrated that Inh I and Inh II could effectively block UV irradiation-induced activation of transcription activator protein 1 (AP-1) in mouse JB6 epidermal cells, which mechanistically may explain their anticarcinogenic actions. In the present study, we investigated the effects of Inh I and Inh II on the expression and composition pattern of the AP-1 complex following stimulation by UV B (UVB) irradiation in the JB6 model. We found that Inh I and Inh II specifically inhibited UVB-induced AP-1, but not NFκB, activity in JB6 cells. Both Inh I and Inh II up-regulated AP-1 constituent proteins, JunD and Fra-2, and suppressed c-Jun and c-Fos expression and composition in bound AP-1 in response to UVB stimulation. This regulation of the AP-1 protein compositional pattern in response to Inh I or Inh II may be critical for the inhibition of UVB-induced AP-1 activity by these agents found in potatoes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work illustrates potential adverse effects linked with the expression of proteinase inhibitor (PI) in plants used as a strategy to enhance pest resistance. Tobacco (Nicotiana tabacum L. cv Xanthi) and Arabidopsis [Heynh.] ecotype Wassilewskija) transgenic plants expressing the mustard trypsin PI 2 (MTI-2) at different levels were obtained. First-instar larvae of the Egyptian cotton worm (Spodoptera littoralis Boisd.) were fed on detached leaves of these plants. The high level of MTI-2 expression in leaves had deleterious effects on larvae, causing mortality and decreasing mean larval weight, and was correlated with a decrease in the leaf surface eaten. However, larvae fed leaves from plants expressing MTI-2 at the low expression level did not show increased mortality, but a net gain in weight and a faster development compared with control larvae. The low MTI-2 expression level also resulted in increased leaf damage. These observations are correlated with the differential expression of digestive proteinases in the larval gut; overexpression of existing proteinases on low-MTI-2-expression level plants and induction of new proteinases on high-MTI-2-expression level plants. These results emphasize the critical need for the development of a PI-based defense strategy for plants obtaining the appropriate PI-expression level relative to the pest's sensitivity threshold to that PI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developing chickpea (Cicer arietinum L.) seeds 12 to 60 d after flowering (DAF) were analyzed for proteinase inhibitor (Pi) activity. In addition, the electrophoretic profiles of trypsin inhibitor (Ti) accumulation were determined using a gel-radiographic film-contact print method. There was a progressive increase in Pi activity throughout seed development, whereas the synthesis of other proteins was low from 12 to 36 DAF and increased from 36 to 60 DAF. Seven different Ti bands were present in seeds at 36 DAF, the time of maximum podborer (Helicoverpa armigera) attack. Chickpea Pis showed differential inhibitory activity against trypsin, chymotrypsin, H. armigera gut proteinases, and bacterial proteinase(s). In vitro proteolysis of chickpea Ti-1 with various proteinases generated Ti-5 as the major fragment, whereas Ti-6 and -7 were not produced. The amount of Pi activity increased severalfold when seeds were injured by H. armigera feeding. In vitro and in vivo proteolysis of the early- and late-stage-specific Tis indicated that the chickpea Pis were prone to proteolytic digestion by H. armigera gut proteinases. These data suggest that survival of H. armigera on chickpea may result from the production of inhibitor-insensitive proteinases and by secretion of proteinases that digest chickpea Pis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone morphogenic protein-1 (BMP-1) was originally identified as one of several BMPs that induced new bone formation when implanted into ectopic sites in rodents. BMP-1, however, differed from other BMPs in that it its structure was not similar to transforming growth factor beta. Instead, it had a large domain homologous to a metalloendopeptidase isolated from crayfish, an epidermal growth-factor-like domain, and three regions of internal sequence homology referred to as CUB domains. Therefore, BMP-1 was a member of the "astacin families" of zinc-requiring endopeptidases. Many astacins have been shown to play critical roles in embryonic hatching, dorsal/ventral patterning, and early developmental decisions. Here, we have obtained amino acid sequences and isolated cDNA clones for procollagen C-proteinase (EC 3.4.24.19), an enzyme that is essential for the processing of procollagens to fibrillar collagens. The results demonstrate that procollagen C-proteinase is identical to BMP-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although specific proteinases play a critical role in the active phase of apoptosis, their substrates are largely unknown. We previously identified poly(ADP-ribose) polymerase (PARP) as an apoptosis-associated substrate for proteinase(s) related to interleukin 1 beta-converting enzyme (ICE). Now we have used a cell-free system to characterize proteinase(s) that cleave the nuclear lamins during apoptosis. Lamin cleavage during apoptosis requires the action of a second ICE-like enyzme, which exhibits kinetics of cleavage and a profile of sensitivity to specific inhibitors that is distinct from the PARP proteinase. Thus, multiple ICE-like enzymes are required for apoptotic events in these cell-free extracts. Inhibition of the lamin proteinase with tosyllysine "chloromethyl ketone" blocks nuclear apoptosis prior to the packaging of condensed chromatin into apoptotic bodies. Under these conditions, the nuclear DNA is fully cleaved to a nucleosomal ladder. Our studies reveal that the lamin proteinase and the fragmentation nuclease function in independent parallel pathways during the final stages of apoptotic execution. Neither pathway alone is sufficient for completion of nuclear apoptosis. Instead, the various activities cooperate to drive the disassembly of the nucleus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hepatitis C virus RNA genome encodes a long polyprotein that is proteolytically processed into at least 10 products. The order of these cleavage products in the polyprotein is NH2-C-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B -COOH. A serine proteinase domain located in the N-terminal one-third of nonstructural protein NS3 mediates cleavage at four downstream sites (the 3/4A, 4A/4B, 4B/5A, and 5A/5B sites). In addition to the proteinase catalytic domain, the NS4A protein is required for processing at the 4B/5A site but not at the 5A/5B site. These cleavage events are likely to be essential for virus replication, making the serine proteinase an attractive antiviral target. Here we describe an in vitro assay where the NS3-4A polyprotein, NS3, the serine proteinase domain (the N-terminal 181 residues of NS3), and the NS4A cofactor were produced by cell-free translation and tested for trans-processing of radiolabeled substrates. Polyprotein substrates, NS4A-4B or truncated NS5A-5B, were cleaved in trans by all forms of the proteinase, whereas NS4A was also required for NS4B-5A processing. Proteolysis was abolished by substitution mutations previously shown to inactivate the proteinase or block cleavage at specific sites in vivo. Furthermore, N-terminal sequence analysis established that cleavage in vitro occurred at the authentic 4A/4B site. Translation in the presence of microsomal membranes enhanced processing for some, but not all, proteinase-substrate combinations. Trans-processing was both time and temperature dependent and was eliminated by treatment with a variety of detergents above their critical micelle concentrations. Among many common proteinase inhibitors tested, only high (millimolar) concentrations of serine proteinase inhibitors tosyllysyl chloromethyl ketone and 4-(2-aminoethyl)benzenesulfonyl fluoride inactivated the NS3 proteinase. This in vitro assay should facilitate purification and further characterization of the viral serine proteinase and identification of molecules which selectively inhibit its activity.